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Constructing constrained invariant sets in multiscale continuum systems
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We present a method that we name the constrained invariant manifold method, a visualization tool to
construct stable and unstable invariant sets of a map or flow, where the invariant sets are constrained to lie on
a slow invariant manifold. The construction of stable and unstable sets constrained to an unstable slow
manifold is exemplified in a singularly perturbed model arising from a structural-mechanical system consisting
of a pendulum coupled to a viscoelastic rod. Additionally, we extend the step and stagger hiketSodket,

H. Nusse, and J. Yorke, Phys. Rev. Leé36, 2261 (2001] to calculate a5 pseudoorbit on a chaotic saddle
constrained to the slow manifold in order to be able to compute the Lyapunov exponents of the saddle.
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[. INTRODUCTION a larger subspace containing the slow manif@{ and this
transition is moderated by the strength of the coupling be-
The dynamics of multiscale systems are of current signifitween various time-scale components. It is thus of interest to
cant interest in fields, such as weather modefibigand con-  understand the system dynamics constrained to the slow
tinuum mechanic$2]. Examples exist on a wide variety of manifold, as well as the location of structures on the slow
length scales and over a diverse range of disciplines, such asanifold which have unstable dynamics transverse to the
control in biological systems with deld], neural networks  slow manifold.
[4], reaction-diffusion and convection-diffusion systems In this paper, we present a method, called the constrained
[5,6], multimode laser§7], and engineering structurgg). In invariant manifold(CIM) method, to compute an approxima-
addition, there are experiments with multiscale structuration of invariant sets of a multiscale system that are restricted
systems which demonstrate both low- and high-dimensionab an invariant slow manifold. The method is easy to imple-
dynamics[9]. Examples of more restricted models fall into ment and should be applicable to multiscale systems exhib-
the generalized synchronization cldd9], where patholo- iting mixed fast and slow motion in a chaofiar pre-chaotit
gies of smoothness of chaotic motion on constrained maniregime for which a slow manifold approximation can be
folds are examined. found. The “constrained invariant sets” consist of the stable
Such multiscale models often involve systems of partialand unstable manifolds of a chaotic saddle on the slow mani-
or partial and ordinary differential equations, and are posedold.
in infinite-dimensional spaces. However, it is well known The CIM method is useful for visualizing the structure of
that the global dynamics of such systems are often coneonstrained invariant sets, but it is not possible to compute
strained to a finite-dimensional subspace, and thus one wouktatistical measures, such as Lyapunov exponents, directly
like to obtain a finite-dimensional description of the dynam-from the results of the CIM method. Hence, we present a
ics. In one common situation, there is a gap in the spectrurmodification of the stagger and step metliad] to approxi-
of natural frequencies of the system, and the problem can bmate a chaotic saddle constrained to the slow manifold,
recast as a singularly perturbed problem, and well-knowrwhich allows for the possibility of computing the Lyapunov
analytic methods exist to obtain a reduced dimension modeadxponents of the saddle with respect to the full phase space.
of such a system. In the regime where the high-frequency Several methods exist to approximate dynamic invariants,
components of the system damp out, the global dynamics dfe they(un)stable manifolds or chaotic saddles. Some ex-
the singularly perturbed system reside on a lower-amples include the “sprinkler” methofil5] for computing
dimensional manifoldia slow manifold embedded in the (un)stable invariant manifolds, which is easy to implement
full phase space. An extensive constructive theory exists fofor certain systems, but is limited in scope. The stagger and
such problems, for example, Refd&1,17. In addition, when step method14] can find chaotic saddles in arbitrary dimen-
a multiscale system cannot be cast in a singular perturbatiosion, while the proper interior maximum{PIM)-triple
framework, other techniques exist for obtaining a dimen-method[16,17] works well for tracking manifolds when the
sional reduction of multiscale dynamifs3]. dimension of the unstable manifold is one. The methods of
The transition to chaotic dynamidsia the period dou- Krauskopf and Osingé21,22 can be used to “grow” two-
bling route or crisis, for exampléas been extensively stud- dimensional invariant manifolds in three-dimensional vector
ied. Less well understood, however, is the transition fromfields. See also Refl19]. Box methods have also been de-
low-dimensional chaotic to high-dimensional chaotic behavveloped which attempt to cope with uneven growth rates.
ior. Such a transition has been recently observed in multiSee, for example, Ref.18]. Recently, the semihyperbolic
scale systems between low-dimensional chaos that resides partial differential equation corresponding to the invariant
a slow manifold and high-dimensional chaos which exists inrmanifold condition has been solved by the particularly effi-
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cient fast marching methods by Guckenheimer and Vladimir- A. A brief review of singularly perturbed systems
sky[20]. However, to the best of our knowledge, no methods and center manifold theory

exist to approximate invar!ant manifold .struc.tures when Consider the singularly perturbed system
these structures are constrained to a slow invariant manifold,

particularly when they are unstable with respect to the global X= f(X,Y; 1),
dynamics of the full systerf23].
The paper proceeds as follows. We describe the CIM wy=9g(X,y;u), (1

method in Sec. Il, and review briefly the theory of slow

manifolds for singularly perturbed systems on which thewherexeR™, yeR", f andg are sufficiently smooth func-

method is applicable. We then introduce a viscoelastic lineafions of their arguments, the singular parametegjs.e., 0

structural/nonlinear mechanical system in Sec. Ill, trans=<<u#<1, and overdot denotes differentiation with respect to

forming the system from a coupled nonlinear ordinary andime. Whenu=0, Eq.(1) reduces to an ordinary differential

linear partial differential equation to a singularly perturbededuation plus the algebraic constragfk,y;0)=0. Solving

system of ordinary differential equations on which we thenthe constraint fory yields an expression of the form

apply the CIM method and calculate approximations of the=Ho(X). The graph oH, is referred to as a slow manifold,

constrained stable and unstable invariant sets. In Sec. IV wand we label this grapM,. A reduced dimension system is

briefly present an extension of the step and stagger methd¥ptained usingHo,

of Ref.[14], which allows one to compute a pseudoorbit on )

a chaotic saddle constrained to a slow manifold, from which x=f(x,Ho(x);0), 2

we can approximate the Lyapunov exponents of the saddle , ,

with respepca to the full phage F;pace. Wg finish with a discus\-"’h'cr_1 mode_ls the slow dynamics qonstra_lned/\tq).

sion and conclusions in the last two sections, and we present !t iS Possible that the slow manifold will not be globally

the technical details of a transformation of the coupled meSNgle valued; it may, in fact, consist of several sheets. This

chanical system in the Appendix. rgducnon technique prowdes local information on a §ubre-
gion of the slow manifold. However, for the present discus-

sion, we assume that1, is global. The reduced system of

Eq. (2) determines the dynamics constrained to the subspace

y=Hgy(X). The so-called fast dynamics, motion off &f,

are obtained by changing to the stretched variattd/ u in

When considering a multiscale system, low-dimensionaEd. (1) and then settinge to zero,
complex dynamics have been observed, where the dimension

II. THE CIM METHOD: CALCULATING CONSTRAINED
INVARIANT SETS

of the dynamics is classified by, for example, the number of x'=0,
Karhunen-Loge (KL) modeg 24] which are needed to carry ) _
some specifiedlarge) percentage of the system energy. As y'=g(x,y;0), 3

some critical coupling parameter between two subsystems , , . I
with different characteristic time scales is varied, the systen’{"here =d/dr. Fgr fixedx=Xo, there is an equmbrlgm of
may undergo a “dimensionality bifurcation,” which may be € second equation of syste8) aty.=Ho(xo). The linear
defined as a sudden increase in the number of KL modes th&f@Pility of ye is determined by the real parts of the eigen-
are required to satisfy the energy threshold. The structure oflueS Of Dyg(X,¥;0)[x=x, y=y,, Which we assume have
the invariant sets on the submanifold carrying the low-nhonzero real parts. Considering E¢s) and (3), the reason
dimensional dynamics may give an indication of the mechafor the nomenclature “slow” and “fast” becomes apparent:
nism underlying the dimensionality bifurcation. Eq. (2) evolves on arD(1) time scale while Eq(3) evolves
One particularly important class of multiscale models areon anO(1/u) time scale.
the singularly perturbed systems. Such systems consist of a A typical approach to singular perturbation problems such
system of ordinary differential equations, in which a smallas Eq.(1) is to obtain so-called matched asymptotic solu-
parameter or parametefithe singular paramete)] multiply ~ tions. Such a solution is obtained by solving the slow prob-
some of the derivatives. Transients of such a system with ¥m (2) and fast problen{3) and matching the resulting so-
stable equilibrium, for example, exhibit different relaxation lutions at their common asymptotic bound48p,26. Here
time scales, moving through a hierarchy of subsystems frorie adopt a geometric viewpoint, and consider the fast and
fast to successively slower subsystems governed by the smalow invariant subspaces in their entirety. The above discus-
paramete(s). In describing the CIM method, we will restrict sion applies only in the cage=0, but we now consider the
ourselves to such singularly perturbed models. Note, howsituation wherw is nonzero but small.
ever, that the CIM method should be applicable to multiscale When u is small, based on an implicit function theorem
systems for which an approximation of the slow dynamicsargument, one expects the slow invariant manifold to persist.
can be obtained, provided the system exhibits mixed fast antihdeed, when & u<1, a slow invariant manifold persists if
slow motion. We briefly review singularly perturbed systemsM, is a normally hyperbolic invariant manifol27]. We
and center manifold theory in Sec. Il A, and develop thelabel this manifoldM,,, and it is given by the graph of a
CIM method in Sec. Il B. The CIM method depends on twofunction which we label ag=H ,(x). Using the invariance
parameters, and we discuss their choice in Sec. Il C. properties of Eq(1), one obtains an asymptotic expansion of
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the form H ,(x)~Ho(x) + uH(x) + w?H,(X)+ - - -, which (1) Construct a mesh of initial valuess on an approxima-
converges agt—0. The leading order terrilg(x) in the  tion to the slow manifoldM,, .
expansion oH ,(x) is simply the termHy(x) introduced in (2) Evolve each initial values; forward (backward under

the discussion above for the cage=0. For more back- Ed. (1) to some fixed timel "(—~T7).

ground on geometric singular perturbation theory and slow_ (3)| If the so_:(uﬂ?nsi(t) remains \?"th"}l some.. (z_) of

manifolds, including howH , is calculated, see, for example, the slow manifold approximation for a EmEE[O’T ] (é

Refs.[11,12,28,29 e[—UT _,O]), _then si(0)e M, [si(0)e M ], Where/\/_lM
For the purposes of this paper, we consider a system u) is defined to be the stableunstablg M, relative

form (1) with the following assumptions. First, assume the'nv.?ﬂznéfl\ﬁpr:%)imzt'ggh also easilv be apolied to maos b
real parts of the eigenvalues difyg(x,y;0)|X:X0,y:ye are y pp bs by

: o replacing timeT* with iterateN* above.

negative for allxy, so thatM, is linearly stable. We also We define a given initial condition oo\, to be an
assume that, for sufficiently small, the only attractor in the __resolved pointf it remains within & of M “tor time T
full phase space lies oM, . Additionally, assume thatto  ynder action of the flow. To be precise, ebe an initial
is single valu_ed, and therefore, glob_al. Under these_ hypf)trbondition chosen on the approximated slow manifait, .
eses, Eq(2) will model the dynamics in the asymptotic limit At each time stefi,=to+hAt of the integration, we mea-

u—0. Then, for 6<u<1 and sufficiently smallM,, will sure the distance

be globally attracting, so that after any fast transients have

died out, orbits will lie exponentially close to the slow mani- n

fold M, . We also assume that the dimension of the slow d=1/. (yh'i—Hh,i)z,

subspace isn=3, and that a chaotic attractéor saddle =1

exists onM,, . of the fast variables in the numerically integrated solution

As p is increased\,, may lose asymptotic stability, so ry, v 1=Ix(t=t,),y(t=t,)} from the point Hp=H , ()
that global dynamics of the system are no longer carried 0B the slow manifold approximation, computed at the slow
M,,, and nontrivial fast motions occur. In the transition yariables,, of the integrated solution, where we recall that

from purely slow motion to mixed fast and slow motion, it is js the number of fast components in E@). If for all time

useful to understand the structure of dynamic invariants ORteps up to and including, d<e, thens is ane-resolved
M, . For convenience, we define thel ,-relative invariant  jnt,
to be the set of points o, which remain onM,, under Step 1.For each component, i=1, ... m of the slow

M, -relative invariant is justM,, itself, but asu increases, <y <x. ;. Then letDeR™ be the box defined byD
the M ,-relative invariant becomes a more complex subseg[xlvL X1ulX[Xar XoulX - - X[XmL Xmul, @and choose

of M,,. a rectangular mesh &#™ values,
B. Description of the CIM method S=| xeD[xi=x; +Axj, j=0,...P-1,
We now present a method to approximate the N
M ,-relative invariants. We start with a singularly perturbed i=1,...m, Ax= JV AL
system of form(1). For u sufficiently small, there is a slow P-1

manifold M, , which we assume to be given by the graph The mesh may also be defined in other ways, such as from

y=H,(x) over the slow variables in some regioDCR™, 5 random distribution.A mesh on an approximation of the
chosen to contain the slow dynamics of interest. We alsoI W manifold is then aiven b §={(x )xes
assume that system parameters are chosen such that the ay 9 ySEy)ixe sy
namics of the full system are characterized by either a cha- H,. ()} o " ~ .

otic attractor or chaotic saddle ow,, . We also suppose that Step 2.For each initial conditiorse S, system(1) is in-

w is chosen large enough that(, is not asymptotically tegrated with a stiff solver such as a Gear method, to time
)22 *+
stable, in the sense that there exist initial conditions nefgr

which do not converge asymptotically 1ot , . Step 3.Surround the domai® by ane neighborhoodV,
The idea of the method is that poﬁwts in the staplewhere distance is taken in the Euclidean norm. The size of
M ,-relative invariant will by definition never leava,.  thee neighborhood:, (s-) is chosen small enough so that

An approximation of this set is then obtained by findingMost initial conditions leave\" for te[0,T7], but not
those points on\1,, which remain “near”M,, for a “speci- smaller thanO(u), the size of the singular perturbation pa-
fied length” of time. We discuss the issue of what we mearfameter(see also the remark belowf s is anzy-resolved
by near and specified length in the following section. Like-Point for (e, ,T*), then se M3. Likewise, if s is an
wise an approximation of the unstable ,-relative invariant ~ et-resolved point for§_,T7), thense M.

is obtained by finding points oM, remaining neamM,, for Remark.There is another, more efficient way to compute
a specified length of time in the time-reversed system. Wéhe pointss; e M ;j For anys; e/\/li, the image of; under
outline the CIM method and follow with the details of the the timeT™" flow map of Eq.(1), pr+=(X7+,Y7+), approxi-

method below. mates the unstable invariant 5@12 , since by definition the
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solution with p+ as an initial condition remains neavf,  Figs. 1a—0], thenT= should be increased.
for te[—T*,0]. Thus, only points inM S need be com- We found that the best method for tuning the method
.0]. , ,L

puted explicitly. However, there is one disadvantage to thi@arameters was fo first sét' to a relatively small value and
approach: It is not practical to examine a subregiorMJt' then sete . as described above to obtain a set that appears to

since the pointgt+ will tend to spread out across the entire ?e regson.iably? f'Hed outt = mzy thendbitljrégr_eaSﬁd UI:I'[I| the h
unstable invariant set. iner details of the set are observed. itionally, the mes

Some observations of the above method are important tgan be refined to fill in finer details, or a submesh can be
note employed on a subregion of interest. Note also that when

(1) To obtain a higher level of detall of the structure of the refining the mesh, it may be possible to decrease the value of

(un)stable M, invariants, one may simply impose a finer T ‘.Nh'Ch will make the computations somewhat.mo_re eco-
mesh on some subregion &f of interest and reapply the nomical. We also note here that the CIM method is simple to

implement on a parallel or distributed computing platform,
CIM method. . .
and this greatly speeds the computations. See Sec. VI for
Jurther comments.

There are a number of challenges to obtaining a rigorous
reversed system, orbits will tend to move away frov, error analysis of the approximated constrained invariant set.

and off to infinity. When considering the time-reversed map,ltﬂ addltlror;(i';]c: rt(i)u:dchfIherrolr,v\tlhrer:]renli? %n errs\: |Ir|1trodurc]:edrr|nr
to approximate the unstablg/,-relative invariant, it is theeltaclirt)ap gnds?)nothg coaerssegess gf thoe ﬁwZ:h uesegsAabaikv?/ard
therefore necessary to set >¢, , and it may also be nec- P :

. . _ error analysis is the subject of current investigation.
essary to decrease the required residence Timas well. y ) 9

(2) Under the assumptions stated above, anduf@uffi-
ciently small, the global attractor of the system is containe
in a trapping region which contain$1,, . Thus, in the time-

Ill. EXAMPLE: COUPLED VISCOELASTIC

C. Choosinge. and T* STRUCTURAL-MECHANICAL SYSTEM

The choice ofT™ ande. must be made in a problem- .
ex P In order to demonstrate the CIM method, we consider a

dependent fashion. The diameter of the box surrounding i : L . .
should be small enough so that orbits of the system wiIIS.peCIfIC _mechanlpal_ system con&stmg of a vertically posi-
ned viscoelastic linear rod of densipy, with cross sec-

escape the box. On the other hand, if the diameter is taken ltbo .
be too small, then most initial conditions will quickly leave 1N Ar, and lengthl, , with a pendulum of mass,, and
the box, and the resulting approximation will be poor. The®M lengthL,, coupled at the bottom of the rod, and where

smallest value forT* which sufficiently distinguishes be- the rod is forced from the top harmonically with frequency

tween points that approximate the constrained stable set frof} @1d magnitudea [2]. The rod obeys the Kelvin-Voigt
those that leave the slow manifold should be used. Thesill€SS-strain relatiof80] andE, andC, denote the modulus
statements describe desirable properties that the paramet&sélasticity and the viscosity coefficient, while, is the
will satisfy, but do not indicatdow to choose the method coefficient of viscosityper unit length of the pendulum and

parameters. We now present an approach to choesirend 9 is the gravitational constant of acceleration. The pendulum
T* - is restricted to a plane, and rotational motion is possible. The

When choosing . it is useful to examine a time series of SYStem is modeled by the following equations:

the “bursting variable”A;=|Z;—H(Z;)|, whereZ denotes . . .

the fast variables anH is the slow manifold approximation, MpLpf+Mplg—xa—up]sin(6) + Cpl,6=0,

and which measures the distance of the fast components i .

from the slow manifold. As a general guide, we found thatA;p,u(x,t)—AE.u"(x,t) —A,C.u"(X,t) = A;p (g—Xa) =0,

choosinge .. to be initially around5-10% of the maximum (4

amplitude of the fast bursts works well as a starting guess. It i

is advisable to use a somewhat coarse initial mesh when finghere =4d/4t, and '=d/Jx, with boundary conditions

tuning the method parameters, and then to refine the mesh to

increase the resolution of the approximation. U(x=01)=0, AE (9_U
Figure 1 shows the results of applying the CIM method to ’ T ax

a coupled structural and mechanical system, to be introduced

in the following section. If the resulting CIM approximation and where

of the invariant sets contains localized gaps of missing infor-

mation[as seen in Fig. ®], then increasing . fills in the Tp=M_L 6%+ My(g—Xa—Ug)cog 6)

missing information. If on the other hand, the invariant set

appears to be globally sparkes seen in Figs.(§—i)], then  denotes the tension acting along the rigid arm of the pendu-

decreasing the value @ reduces the sparseness of the setlum. The variableu(x,t) denotes the displacement field of

One could also refine the mesh in order to obtain an imthe uncoupled rod with respect to the undeformed configu-

provement in the approximation, however, this will add sub-ration, relative to the poinf, while ug denotes the relative

stantially to the computation time. If however the resultingposition of the coupling en® of the rod with respect to

approximations consist of a number of simply connectedpoint A. See Fig. 2 for a schematic of the rod and pendulum

components, with no apparent fractal struct{ms seen in system.

dug
|x=Lr:ArErW :TpCOS{ 0),
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40 — 40 : - < '
(9) (h)

FIG. 1. The results of applying the CIM method to the structural-mechanical system presented in Sec. lll, showing the effect the choice
of method parameters, andT* has on the approximation of the resulting stable constrained invariant set. The columns correspond from
left to right toe, €{0.01,0.05,0.L and the rows correspond from top to bottomTtd  {2.0,4.0,6.9.

Equation(4) is nondimensionalized by the following vari- wp w 1 M
able rescalings: K=oy *m e, " 2m—1" p= ApL,’

X
§=I:, 7= wpt, _ 1 G

gp_zprpv gr_ziwll]-Lerr’

XA u Ug where

and parameter rescalings p
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0] o
Forcing 0=— 1+;1(—1)'“77,-—XA(7) sin( @) —2¢,6,
. 7 7
L(0) 9= — —5 5 +2{—5
47 7, Mt

—(—=1)™123[ 62coq 6) —sir(6)]

—[4L;1+(—1)m+12/30052(6)

Xa(7), (6)

equivalent to Eq(4), whereL ,(6) is the infinite linear op-
erator

Ln(0)=2, [Smj*+(—1)"I28 c0S(6)].
“~
FIG. 2. A schematic of the rod and pendulum system. The ex- :

tensible viscoelastic linear rod is sufficiently stiff relative to the See the Appendix for the details of this transformation
pendulum that it evolves on a fast time scale, while pendulum mo- Finally, consider the finite set of ordinary differer.nial
tion is slow. The coupled system is driven from the top with aequations obtained from E¢6) by truncating to the firsN

periodic forcing function. The rod moves only in the vertical direc- - . .
tion, and the pendulum is planar and is free to undergo rotationa'iOd mOdeS and applying the additional rescalifigs, ¥}

motion. _:{9, 0}: and {ﬂZM%ZZm—lyluﬂMrznZZm}:{nm ) .77m}’ obtain-
ing
are the natural frequency of the uncoupled pendulum and the .
spectrum of natural frequencies of the uncoupled flexible P, =V,
rod, respectively, whilg, and {, denote their damping fac-
tors. N
The stable and unstable static equilibrium configurations \ifzz 1= 2 (-1 (¥,2)— oV,
of the coupled rod and pendulum system are given by j=1
(6:,U) and (fs,,U), where Xsin(Wy)+2¢,¥,,
0(;: 0, 05 == ar, -
+ ‘1'3: _2779\1,4,

N ,u2772 5 .

The normalized equations are thus wZom—1=Zom,

0+[1—Vg(7)— Xa(7)]SIN(0) +2£,0=0, i Zom=fn(¥,2),

p2rV(E,7) = V" (£,7) = 8L uV"(£,7) = = u?m?Ka(7),

V(£=0,1)=0, V'(é=1,7)=—pu?Bm[1-Tcog6)],
(5  Where

m=1,2,...N, (7)

where 1 1
fn(W,2)= Lm,N(q}l){ - Zzszﬁ' 28 Zom
V(£n=U(En-0(§), 0sé<1, —o<r<+to,

_ — (=)™ 12p[Wicog ¥y) —Sir(Vy)]
and we note that we redefinesg/dr, and ' =d/9& for the
remainder of the paper.

In carrying out our analysis, we will consider a reduction
of the systen(5). This reduction is obtained by performing a
modal expansion of the rod equation, second equatidb)pf and L;’IN(G) is the inverse of thé&l X N truncation of opera-
where the displacementV is expanded asV(¢&,7) tor L,(#). Note that we have changed to an autonomous
=37 m(7) dm(€). This results in an infinite system of system by introducing the cyclic variablek; and ¥, to
coupled oscillators, account for the periodic forcing, which we recall has period

4
v

+(—1)™"128 cog(¥,)

a\I,4]
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Q). However, only one additional variable is realized, due to

the relationW,;+W¥,=1. For this paper, we consider the
truncated system obtained by takihg=1. For the param-

eter regimes we consider here, we also considered sy&jem
with N=2 andN=10, and found qualitatively similar re-
sults.

The primary parameter governing the coupling between
the rod and pendulum is the ratio of the natural frequency of

the pendulum to the frequency of the first rod modge,
=wp/w;. In the limit w;— 0, the rod is perfectly rigidu

—0, and the system reduces to a forced and damped pendt

lum. For O<u<1 sufficiently small, system motion is con-
strained to a slow manifold, and tliast linear rod modes
are slaved to the slow pendulum motigdk®]. For nonzerax
(the amplitude of the periodic forcinghe slow manifold is a
nonstationaryperiodically oscillating two-dimensional sur-
face.

We note that for &<u<1, Eq. (7) is a singularly per-
turbed system of the form of E@l), and there exists a slow
manifold M, for Eq. (7). The pendulum variablelus the
periodic forcing are the slow variables, while the rod vari-

PHYSICAL REVIEW B8, 056210 (2003

3

2

l_

< 0

-3
0 0.05 0.1

n

0.15 0.2

FIG. 3. (Color onling Five finite time Lyapunov exponents of

ables are the fast variables. Using the invariance propertigsq. (7) as a function ofu. Note that the most negative Lyapunov
of the vector field, we obtained an analytic approximation ofexponent is not shown. The second positive Lyapunov exponent

the slow manifold of Eq.(7) to O(u?): Z=H,(¥)
=Ho(¥)+ uH (¥)+ u?H,(¥). Due to the complexity of
the vector field and the fact that we consider@fw.?) ap-
proximation, we useATHEMATICA [31] to compute the ex-
pressions for the componertt .

By strobing Eq.(7) at the period of the drive, one obtains
the map

Gp(\I’,Z)E ¢p+T(q,!Z)i

where ¢,(WV,2) is the flow of Eq.(7), T is the period of the
cyclic variableV,, andp €[0,27] is the phase ofV,. We
then apply the CIM method developed in Sec. Il to this map
Under action of the map, the slow manifold ,, which has

codimension 2, corresponds to a family of two-dimensional

invariant surfacess, , of G,.

IV. MODEL RESULTS

In this section, we examine the transition of the rod an
pendulum model from low-to high-dimensional chaos, as th
coupling parameteg is increased. We first examine how the
Lyapunov values change as a functionugfand find a criti-

cal value at which a second positive Lyapunov exponent de- _
velops. We then apply the CIM method to the coupled rodcomputed solution ¥

and pendulum mod€l) with N=1, and show that the struc-
ture of the constrained invariant sets develops gowmell
below the critical value at which the second positive

(blue) appears negn=0.142, well after the onset of bursting. The
brief window of all-negative Lyapunov exponents occur due to the
appearance and disappearance of stable periodic orbits.

and a solution evolved from any initial conditiogy not on
S,.p,» converges asymptotically 1§, , under action ofG,
and remains there. A reduced dynamic description of the
model is obtained in this case by considering syst@émvith
the change of variablé=H (). When the amplituder of
the periodic forcing is large enough, the system is chaotic
and motion is still constrained to the slow manifold, and
there is one positive Lyapunov exponent. Howeveruas

increased sufficiently, a second positive Lyapunov exponent

develops aju~0.142. Thus, it is clear that dynamic modes

Itransverse to the slow manifold are excited. See Figs. 3 and
4 for a plot of the Lyapunov exponents as a function of the
forcing «. Note that a fixed value fow is chosen, and there

are u values for which stable periodic orbits exist, explain-

ing the window of all-negative Lyapunov values.

d We next directly examine the effect of varying on the
Jorm of the solutions of Eq(7), and in particular, demon-

strate how the solution transitions from motion on the slow
manifold to higher-dimensional motion about the slow mani-
fold. In Figs. 3a—d, we plot the difference between the

¥ ,2) of the ordinary differential equa-

tion (7) and the slow manifold approximatid@,HM(@)),
as a function of time. In Fig.(®), ©=0.001, and the initial
condition is chosen off of the slow manifold. After a brief

Lyapunov exponent appears. Unless otherwise noted, simigransient motion, the solution converges to the slow mani-

lation parameters are as followg:=0.05, 5=0.5, {,={,
=0.01, =2.153 367, and)=2.0.

We first consider the effect of increasing on the
Lyapunov exponents. In the case wherg <1 is suffi-
ciently small thatS, , is invariant under the action of the
mapG,, . This situation corresponds to global slow motion in
the associated flow, hence the global attractor liesSpp,

fold, indicating that rod motion is slaved to tliglow) pen-
dulum motion. Againg is chosen large enough that system
motion is chaotic, but the chaotic attractor lies$p, .

As u is increased, system motion is no longer constrained
to the slow manifold, as seen in Fighp, whereu=0.05. In
this case, an initial condition located far from the slow mani-
fold still approaches the slow manifold. However, thereafter
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30 ' _u ., I fined toS, ,. Instead, there exist solutions with initial con-
- R ditions nearS,, , which do not remain ors, ,, but which

: T Sl ; wander in a neighborhood &, ,. For the remainder of this
section, without loss of generality, we consider the phase
=0. We set the threshold, of the method to 0.1 and@*
=5 (). Thus, we require orbits to remain within 0.1 of the
slow manifold for five iterates o6,. All other parameters
are as stated in the first paragraph of this section.

In Fig. 6(a), we show the computed approximations of the
stable and unstable sets®f , in green and red, respectively,
superimposed over the approximation of the slow manifold,
in blue. Analogously with the definitionsMi and M,‘f,
which we recall are theM ,-relative invariant stable and
unstable sets, we call the stable and unstable approximations
S5 andS; ,, respectively. Additionally, we show the ap-
proximation of the M, invariants projected onto the
(¥1,¥,) plane. Note the fractallike structure of the sets.
The stable semt?S o (green approximates the set of points on
8,0 Which remam orS,, o under action of the ma@,, while
the unstable setSUO (red) approximates the set of points
which remain onS,, ; under action of the mafs, = ! Using
SS as initial cond|t|0ns for Eq(7) and integrating to 8,

We flnd that the resulting orbits remain within=0.1 of the
(time dependentslow manifold M, . Thus, SS oCM S By
extensroné‘5 CMS forall pe (O 21). Addrtronally, more
detail on the structure of the invariant set can be obtained by
simply applying the CIM method to a mesh on a subregion
of the domainD. See Fig. 7.

The bursts do not appear to be correlated in time. How-
ever, we have spatially correlated the onset of a burst to a
localized “escape” region of the slow manifold, correspond-
ing to the region where the pendulum is situated near vertical
(¥1mod 27r~0) and the pendulum velocit¥', is near a
local extremum, where solutions with initial conditions in
this region immediately leave the slow manifold. Note that
u | . | r s ] this region is located away from the approximated con-
o P 0.135 0‘&“ 0.145 0.15 strained invariant sets approximated with the CIM method.

Physically this region corresponds to a large momentum

FIG. 4. (Color onling The bifurcation diagram showing the fast transfer from the pendulum to the rod. Figur@)sshows the

rod displacement vg, and the two finite time positive Lyapunov correlation between bursts and the pendulum position/

exponents of Eq(7), on the same interval gf values. velocity. We found that, for the parameters chosen, a burst is
observed whefW,|>~3.
the orbit oscillates in a®(1) neighborhood about1,, . The At a critical valueu,~0.142, another positive Lyapunov

rod-displacement dynamics exhibit a bursting charactergxponent is born, and high-dimensional chaos develops. For
which is illustrated in greater detail in Fig.(d. A burst values ofu slightly aboveu., the system still bursts, but the
event develops as a sudden, large-amplitude excursion awdyrsts have large amplitude and lose the relaxation character
from the slow manifold, followed by a rapid relaxation os- observed wheru<u.. However, the approximated con-
cillation back on to the slow manifold. Physically, a burst is strained invariant sets are qualitatively the same as in the
characterized as the sudden onset of a large-amplitude rapidsew=0.05. We speculate that the structures that give rise
vibration of the rod, superimposed over the slow rod motionto the instability transverse to the slow manifold do not in-
due to its slaving to the pendulum, which then quickly dampgersect the constrained invariant set. In fact, in the following
out. Note that this is well below the paramefer0.142 at  section, we will show that the chaotic saddle associated with
which a second positive Lyapunov exponent appearsthe constrained invariant set has only one positive Lyapunov
Though nontrivial transverse dynamics have developed, st@xponent, even fop> u. .
tistically, the slow dynamics dominate the fast dynamics. As u increases further toward the valye=1/2, where

We apply the CIM method fo=0.05, in which bursting the rod and pendulum have a 2:1 resonance, it might be
of O(1) amplitude is observefsee Figs. B,0]. As noted expected that the multiscale character of the system would be
above, the global attractor of the system is no longer conlost. However, a time series indicates a difference in scales,
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ZI'HH(\I‘)

ZH (9

25 30 35 40

FIG. 5. (Color) Figures indicate the fast motion of the rod. Each figure shows a part of the time series resulting from the integration of
Eq. (7). The difference between the first fast componZptand its projectionH (W) onto the slow manifold is plotted. lifa), w
=0.001, and the system exhibits only slow motion, after the fast transient has died @ujt. 4n=0.05, and after an initial fast transient,

a bursting behavior is observed. The boxed region is shown in greater dg®@il (d) Also corresponding to the boxed region(bj, shows
the correlation between fast bursting and the pendulum posltipand velocityW,, whereW , is plotted in green ant¥,, is plotted in blue.
Note that bursts are observed whdlfe has a local extremum with¥',|>~3, andW¥,;mod 27 =0.

albeit, with the “slow” variation having a much larger am- In addition to the various forms of chaotic bursting de-
plitude than for the values qf already considered. Applying scribed above, fast periodic bursting is also observed. For
the CIM method withe , =400, it is possible to obtain an example, whenu=0.05 but«a is reduced to 1.745, a long
approximation of the “stable set.” See Fig. 8, which also chaotic transient is observed, which eventually develops into
shows a typical time series in this parameter regime. Though fast periodic orbit, distinguished by the fact that the peri-
the amplitude of the solution is much larger than away fromodic orbit lies off the slow manifold, and is characterized by
resonance, the difference in scales, as exhibited in the occa-rapid and repeating high-frequency vibration of the rod.
sional large-amplitude burst, is apparent. In this regimeFigure 9 shows the fast rod motion representing three periods
points in Mi [Fig. 8(b)] exhibit only “small-amplitude” of such a solution. The role the fast periodic orbits play in
bursting for a long time, where here small amplitude is rela-organizing the global bursting dynamié$ any) is not yet

tive to the large-amplitude bursts pictured in Fig. 8. Clearlyunderstood, but is the subject of an ongoing investigation.
the approximation shown in Fig(I® will have a large error We additionally ran simulations for several other values
bound, due to the size qf, and the approximation will not of the parameters. In particular, we experimented with vary-
exhibit good quantitative agreement with the underlying in-ing the mass-ratio terng, the coupling strengthe (while
variant set. However, we expect the approximation to give anaintaining it in the small parameter regiméhe rod and
good qualitative approximation. pendulum damping termg and{,, and the amplituder of
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(a)

(&}

FIG. 6. (Color) The computed stable invariant ié}o (green and unstable invariant sﬂjyo (red) on the slow manifoldblue). (b) The
same invariant sets projected onto the,(¥,) plane. The boxed region is shown in Fig. 7. The parameterg.a6.05, «=2.133 67,
{=(p=0.01, and=2.

the periodic forcing. In all cases in which we observed burstarbitrary dimension. Here we modify the step and stagger
ing off of the slow manifold, the resulting approximation method to compute the chaotic saddle constrained to the
generated with the CIM method yielded qualitatively similar slow manifold of the rod and pendulum systéw).

results to those presented here, and we do not display their The CIM method of Sec. Il allowed us to compute an
results(but see Fig. 1, showing the projected results of ap2pproximation of the stable and unstable manifolds of the

plying the CIM method where the model parametgrs Cchaotic saddle, and an approximation of the saddle would
=0.05, B=0.25, £,=0.02, {,=0.005, anda=2.5 were therefore be obtained by considering the intersection of the

used. stable and unstabl1,-invariant approximations. However,

it is not possible to compute the Lyapunov exponents of the

chaotic saddle using the CIM method, since it calculates

points that approximate the chaotic saddle independently of

one another, while the step and stagger method computes an
The step and stagger methjddt] provides a highly accu- approximation of an orbit on the chaotic saddle.

rate way to compute chaotic saddles of maps or flows of The step and stagger method works by computing a

V. COMPUTING CHAOTIC SADDLES: EXTENSION
OF STEP STAGGER
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FIG. 7. (Color online A detailed portion of the approximation | ‘ ! |
of the stable invariant seﬁo of system(7) for 0.4<V¥;<2 and 20 30 40 20
3=V,=<4.2[the boxed region of Fig.(®)]. The level of detail was
increased by using a finer mesh. The parameters are the same as in

Fig. 6. 02—

pseudotrajectory on a chaotic saddle. First, the chaotic saddle -
is surrounded by a transient regiBncontaining no attractor.
The pseudoorbit is then computed by finding points ingde 0~
that remain inR for a set number of iterates. If a poipt
escapes fronR under action of the flowor map, a pertur-
bationp+ & is chosen, fow small, such thap+ & remains in

R for the required number of iterates. The perturbaifis 302 n
chosen from what is called axponential stagger distribu- | |
tion. Briefly, the distribution is defined as follows: L&t

>0 and leta be such that 10?= 6. Pull s from a uniform 04 |

distribution betweera and 15(assuming computations are
done to 15 digits of precisignFinally, choose a random unit L
direction vectomu e RY from a uniform distribution on the set
of unit vectors and define=10"°u. For the details of the 0.6
step and stagger algorithm, see Ra#].

The implementation of the step and stagger method for
the rod and pendulum probleiir) is almost the same as b) ' )
described in Ref[14], but with the following differences: 1
We let thes nelghb_orhood _Of the_ SIOW_ manifold 'ntrOd_uced FIG. 8. (Color onling The figure on the top shows part of a time
above be the transient regiéhdefined in Ref[14]. Region  series of the fast motion of the rod in the case 0.5, where the
Ris not actually a transient region, since orbits continuallypenduium and rod are in resonance. Note there are mixed small-

reenterR. However, we simply modify the method to 100k ang large-amplitude bursts, but that there is a total loss of the
for the first escape time fromR. At each iteration of the step relaxation-oscillation character of the bursting. The figure on the

and stagger method bottom shows part of the “stable set” calculated by the CIM
method, indicating that despite the fact the system is at the edge of
F (X H (X)) (step the singular perturbation regime, a definite structure can still be

{Xnt1:Yne1}= obtained using the method. The method parameteis 400.

FXptr,H (X, +1)) (staggey,
A. Applying the modified step and stagger algorithm

we project the iteratg, . ; back on to the slow manifold, so o the rod and pendulum system

that the resulting step-stagger trajectory lies near the actual We apply the modified step and stagger algorithm to ap-
slow manifold M, . Additionally, since the solution is con- proximate the chaotic saddle associated with the constrained
strained to lie onM,,, the small paramete? of the step and  invariant sets computed in Sec. IV. The model parameters,
stagger routine cannot be chosen to be less than the order ather thanu, are as stated in the first paragraph of Sec. IV.
the slow manifold approximation, which is @i(x?) in the  Figure 10 shows the results of a calculation of the stable and
coupled rod and pendulum example presented above. unstable invariant sets calculated with the CIM method,
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o ' ' ' ' 3 mate the closure of all such embedded periodic orbits, and
their stable and unstable manifolds. However, there are dif-
0.4 7 ficulties with this approach.

We describe the problem in terms of the stroboscopic map
G, of the coupled rod and pendulum problem over one pe-
0.2 . riod of the drive, and consider a high-period periodic ogbit
constrained to the slow manifold. One would calculate the
local unstable spacé&'(z) as a hyperplane through,

S | spanned by the unstable eigenvecto(s,,v,2, .- Vum,
corresponding to eigenvalues, ;=\, ,=-- =\, >0 of
- H the Jacobian matriDGg|, which, by the stable manifold
theorem, can be continued from a local manifold to a global
021 li unstable manifold\V(z). However, there are significant and
now well-known computational difficulties due to uneven
growth rates of an initial sphere B"(z), due to unbalanced
04— — instabilities in the typical case that, ;>\ ;>0.
For the problem considered, and for many high-
- RN S S N — S E— dimensional problems, the unstable manifold of a periodic
652 63 65% 635 626 7 orbit will often be a two or greater dimensional surface trans-
verse to the invariant slow manifold. In such a case, once the

FIG. 9. (Color onling The rod displacement from slow motion spanning vectorgv,, 1,0} of EY(2) are found, it is neces-
(as described in the caption to Fig. $howing three periods of a sary to project onto the tangent SPQHMN of the graph of
burst observed in syste() fc_)r a@=1.745, 4=0.05, and all other  {he slow manifold,Z=H (V). However, there are signifi-
parameters as enumerated in the text. cant computational challenges to constraining the growth of
F.uch a one-dimensional subunstable manifold to the slow
manifold. Likewise, locating a large number of periodic or-
bits within the slow manifold would also be computationally
c'challenging. Construction of the stable manifold embedded
In the slow manifold exhibits similar challenges. Thus, we
hope that our method will be useful to explore the still little
understood transition from low- to high-dimensional chaotic
0(1;iynamics.

()

Z-H

combined with the calculation of the chaotic saddle using ou
modification of the step and stagger method. In the figure
wn=0.05.

We computed the Lyapunov exponents of the chaoti
saddle for the rod and pendulum system witk 0.05, using
the modified step and stagger algorithm, and found one pos
tive Lyapunov exponeni ,=2.06+0.01. Increasingu to
0.148, where there are two positive Lyapunov exponents
the full solution, we still found that the chaotic saddle has
only one positive Lyapunov exponent~1.5. This implies VII. CONCLUSION
that the high-dimensional dynamics observed in the model - ] ) o
does not arise from the chaotic saddle. This result is not 'Nhe transition from simple dynamics, such as periodic
surprising, given that the transverse unstable dynamics wef€havior, to chaotic dynamics has been well studied, and a
found in Sec. IV to be localized away from the constraineddréat deal of theory has been developed. Much less is known
invariant sets. We surmise that the chaotic safidfeich isa ~ @Pout the transition from low-dimensional to high-
chaotic attractor in the constrained model, E2)] organizes d|mgn3|onal chaos. Such an gnderstandlng is important to
the low-dimensional chaotic dynamics, while the emergenProvide a deeper understanding of systems such as the
higher-dimensional dynamical behavior arises due to somgoupled viscoelastic structural-mechanical system we pre-
other structure transverse to the slow manifold. The locatioif€nted in Sec. Ill, which can exhibit startling transitions from

of structure responsible for the transverse dynamics is thiW-dimensional chaotic dynamics, consisting of slow cha-
subject of continuing study. otic pendulum motion, with rod motion slaved to the pendu-

lum, to higher-dimensional behavior, where fast rod modes
are excited independent of the pendulum. A principal benefit
of the tool we have introduced is that since it is possible to

We present a brief discussion on an alternate viewpoinisolate the slow invariant sets, regions on the slow manifold
that might be taken to construct constrained stable and urwith transverse instabilities may be located. Once these re-
stable invariant sets, as well as some difficulties that magions are known, it becomes possible to predict transitions
arise with such an approach. from slaved to nonslavedow- to high-dimensionaldynam-

The traditional approach to constructing stable and unics. In addition we are working on finding the specific struc-
stable manifolds of a periodic orbit is based on the stabldures on the slow manifold which have transverse instabili-
manifold theorem. One might argue that stable and unstablies. If such structures can be understood, it might be hoped
manifolds of some high-period invariant orbit constrained tothat the problem can be recast in terms of a normal form,
the slow manifold could be found, which would approximatethus providing a powerful theoretical underpinning to ex-
the stable and unstable manifolds of an invariant set conplain the chaotic to hyperchaotic transitions often seen in
strained to the slow manifold. This in turn would approxi- diverse physical systems.

VI. DISCUSSION
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FIG. 10. (Color The upper figure shows the result of the modified step and stagger calculation of gy$teronsisting of as
pseudoorbit of about 96 000 points, projected onto the slow variattes¥,). The lower figure shows a zoom of the same data, along with
pieces of the stable and unstable manifold of the saddle, computed with the CIM method. All parameters are as stated in the text.

Finally, we remark that the algorithm is easy to parallel-ter consisting of 32 AMD Athlon processors organized into
ize, since the method relies on “painting” the phase spacel6 nodes, of which typically 24 processors were used. Typi-
with a grid of points, and each such point is computationallycal runs were of the order of minutes for a parallel run versus
independent of the others. We implemented the CIM methodhours for a serial implementation and only approximately 20
in FORTRAN9Q using the MPICH(message passing interface additional lines of code were necessary to implement the
for connected hardwaar¢32] implementation of the Mes- parallel version of the code. In addition, we found tfdt
sage Passing Interface specificatj@8] on a Beowulf clus- can be quite small and the resulting image is still quite de-
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tailed. For example, in Fig. 6, we todk" =6() (where we *

recall that() is the period of the driv&’,) and so the status V(& T)= E N T) D),
(reject or keep of each ftrial initial condition could be m=1

quickly computed. Taken together, this implies that one can w

adjust parameterge they system or algorithm paramejers _

and almost immediately determine the effect on the resulting Vh(§,7) le vin(7) dm( ),

approximations. In addition, subregions of the phase space
can be examined in more detail simply by employing a finer

]

mesh. Moreover, in contrast to many other approaches, our v(§,7)= E_ Tm(7) Pl €).

method is global and independent of manifold dimension, m=1

making it applicable to a wide variety of problems. Furthermore, we define the inner product
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0071314. g . 9
pPmV(E,7)=V"(£,7) =8 uV"(£,7)=— pPm*Xa(7).
APPENDIX: TRANSFORMATION OF THE COUPLED Projecting this ontap,,,, we obtain the modal oscillator
ROD-PENDULUM SYSTEM TO A SYSTEM
OF COUPLED OSCILLATORS . Vi Mm 4.
. Mt ——> 3 +2, 2 =——Xa(7). (A3)
We present the transformation of the coupled syst&m Aducpm M ™

to a system of coupled oscillators. The treatment closely fol- ) )
lows Appendix A of Ref.[2], and we note that we have In view of the following relations:
introduced here corrections to expressi®ag), (51), (54),

and(57b) of that paper. Vm= m™ Om>

We introduce the coupling present in the boundary condi- B _ 5 2
tions into the partial differential equatiofPDE). The dis- om=(v(&,7),¢n(£)=(=1)"8Bu uy[1-Tcog 0)],
placement/ admits the representation . . .

T=6+[1—Xa(7)—Vg(7)]cog 0),
V(& 1) =Vh(§,7)+v(é,7), (A1)

whereV, is the solution of the boundary value problem with Vg(7)= Z (— 1)i+1'7'7j(7),
homogeneous boundary conditions, =1

2020 (£ )= V(& 7)— 20 VI (E 1) = — w22 Ka( 7)., modal equatior(A3) is reduced to a relation involving only

VW) = VR(6 ) = 24ep Vil &, 7) W XALT) the modal amplitudey,,,. Finally, the coupled systeitd) is
Vi(6=0,1)=0, V/(é=1,7)=0. (A2) equivalent to the infinite set of coupled oscillators,

The displacement,
v(§,7)=—p*Br[1-Tcog0)]

is unique and satisfies the boundary conditions. The shapeL
functions and the natural frequencies of the homogeneous
boundary value problem associated with E&42) are

1 —sint(6)]=—

0+ sin()+2¢,6=0,

1—21 (— 1)) —Xa(7)

. 7 7 .
m(0) 7+ —5— + 20, —% — (= 1)™ 125] 67cog )
ApS M

4“7%(—1)“““23 co(6)

(2m-1)m Xa(7),

¢m(§)=5in(T§

whereL ,,, an infinite linear operator depending nonlinearly
1 on 6, is given by

Mm=om—1

L(0)=2, [Smi+t(—1)™128cog(6)].
The displacements in EgAl) are expanded as m0) 121 [ Oy (= 1) A (6)]
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