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Constructing constrained invariant sets in multiscale continuum systems
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We present a method that we name the constrained invariant manifold method, a visualization tool to
construct stable and unstable invariant sets of a map or flow, where the invariant sets are constrained to lie on
a slow invariant manifold. The construction of stable and unstable sets constrained to an unstable slow
manifold is exemplified in a singularly perturbed model arising from a structural-mechanical system consisting
of a pendulum coupled to a viscoelastic rod. Additionally, we extend the step and stagger method@D. Sweet,
H. Nusse, and J. Yorke, Phys. Rev. Lett.86, 2261 ~2001!# to calculate ad pseudoorbit on a chaotic saddle
constrained to the slow manifold in order to be able to compute the Lyapunov exponents of the saddle.
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I. INTRODUCTION

The dynamics of multiscale systems are of current sign
cant interest in fields, such as weather modeling@1# and con-
tinuum mechanics@2#. Examples exist on a wide variety o
length scales and over a diverse range of disciplines, suc
control in biological systems with delay@3#, neural networks
@4#, reaction-diffusion and convection-diffusion system
@5,6#, multimode lasers@7#, and engineering structures@8#. In
addition, there are experiments with multiscale structu
systems which demonstrate both low- and high-dimensio
dynamics@9#. Examples of more restricted models fall in
the generalized synchronization class@10#, where patholo-
gies of smoothness of chaotic motion on constrained m
folds are examined.

Such multiscale models often involve systems of par
or partial and ordinary differential equations, and are po
in infinite-dimensional spaces. However, it is well know
that the global dynamics of such systems are often c
strained to a finite-dimensional subspace, and thus one w
like to obtain a finite-dimensional description of the dyna
ics. In one common situation, there is a gap in the spect
of natural frequencies of the system, and the problem ca
recast as a singularly perturbed problem, and well-kno
analytic methods exist to obtain a reduced dimension mo
of such a system. In the regime where the high-freque
components of the system damp out, the global dynamic
the singularly perturbed system reside on a low
dimensional manifold~a slow manifold! embedded in the
full phase space. An extensive constructive theory exists
such problems, for example, Refs.@11,12#. In addition, when
a multiscale system cannot be cast in a singular perturba
framework, other techniques exist for obtaining a dime
sional reduction of multiscale dynamics@13#.

The transition to chaotic dynamics~via the period dou-
bling route or crisis, for example! has been extensively stud
ied. Less well understood, however, is the transition fr
low-dimensional chaotic to high-dimensional chaotic beh
ior. Such a transition has been recently observed in mu
scale systems between low-dimensional chaos that reside
a slow manifold and high-dimensional chaos which exists
1063-651X/2003/68~5!/056210~15!/$20.00 68 0562
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a larger subspace containing the slow manifold@2#, and this
transition is moderated by the strength of the coupling
tween various time-scale components. It is thus of interes
understand the system dynamics constrained to the s
manifold, as well as the location of structures on the sl
manifold which have unstable dynamics transverse to
slow manifold.

In this paper, we present a method, called the constra
invariant manifold~CIM! method, to compute an approxima
tion of invariant sets of a multiscale system that are restric
to an invariant slow manifold. The method is easy to imp
ment and should be applicable to multiscale systems ex
iting mixed fast and slow motion in a chaotic~or pre-chaotic!
regime for which a slow manifold approximation can b
found. The ‘‘constrained invariant sets’’ consist of the stab
and unstable manifolds of a chaotic saddle on the slow m
fold.

The CIM method is useful for visualizing the structure
constrained invariant sets, but it is not possible to comp
statistical measures, such as Lyapunov exponents, dire
from the results of the CIM method. Hence, we presen
modification of the stagger and step method@14# to approxi-
mate a chaotic saddle constrained to the slow manifo
which allows for the possibility of computing the Lyapuno
exponents of the saddle with respect to the full phase sp

Several methods exist to approximate dynamic invaria
be they~un!stable manifolds or chaotic saddles. Some e
amples include the ‘‘sprinkler’’ method@15# for computing
~un!stable invariant manifolds, which is easy to impleme
for certain systems, but is limited in scope. The stagger
step method@14# can find chaotic saddles in arbitrary dime
sion, while the proper interior maximum~PIM!-triple
method@16,17# works well for tracking manifolds when the
dimension of the unstable manifold is one. The methods
Krauskopf and Osinga@21,22# can be used to ‘‘grow’’ two-
dimensional invariant manifolds in three-dimensional vec
fields. See also Ref.@19#. Box methods have also been d
veloped which attempt to cope with uneven growth rat
See, for example, Ref.@18#. Recently, the semihyperboli
partial differential equation corresponding to the invaria
manifold condition has been solved by the particularly e
©2003 The American Physical Society10-1
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MORGAN, BOLLT, AND SCHWARTZ PHYSICAL REVIEW E68, 056210 ~2003!
cient fast marching methods by Guckenheimer and Vladim
sky @20#. However, to the best of our knowledge, no metho
exist to approximate invariant manifold structures wh
these structures are constrained to a slow invariant manif
particularly when they are unstable with respect to the glo
dynamics of the full system@23#.

The paper proceeds as follows. We describe the C
method in Sec. II, and review briefly the theory of slo
manifolds for singularly perturbed systems on which t
method is applicable. We then introduce a viscoelastic lin
structural/nonlinear mechanical system in Sec. III, tra
forming the system from a coupled nonlinear ordinary a
linear partial differential equation to a singularly perturb
system of ordinary differential equations on which we th
apply the CIM method and calculate approximations of
constrained stable and unstable invariant sets. In Sec. IV
briefly present an extension of the step and stagger me
of Ref. @14#, which allows one to compute a pseudoorbit
a chaotic saddle constrained to a slow manifold, from wh
we can approximate the Lyapunov exponents of the sa
with respect to the full phase space. We finish with a disc
sion and conclusions in the last two sections, and we pre
the technical details of a transformation of the coupled m
chanical system in the Appendix.

II. THE CIM METHOD: CALCULATING CONSTRAINED
INVARIANT SETS

When considering a multiscale system, low-dimensio
complex dynamics have been observed, where the dimen
of the dynamics is classified by, for example, the numbe
Karhunen-Loe`ve ~KL ! modes@24# which are needed to carr
some specified~large! percentage of the system energy. A
some critical coupling parameter between two subsyst
with different characteristic time scales is varied, the syst
may undergo a ‘‘dimensionality bifurcation,’’ which may b
defined as a sudden increase in the number of KL modes
are required to satisfy the energy threshold. The structur
the invariant sets on the submanifold carrying the lo
dimensional dynamics may give an indication of the mec
nism underlying the dimensionality bifurcation.

One particularly important class of multiscale models
the singularly perturbed systems. Such systems consist
system of ordinary differential equations, in which a sm
parameter or parameters@the singular parameter~s!# multiply
some of the derivatives. Transients of such a system wi
stable equilibrium, for example, exhibit different relaxatio
time scales, moving through a hierarchy of subsystems f
fast to successively slower subsystems governed by the s
parameter~s!. In describing the CIM method, we will restric
ourselves to such singularly perturbed models. Note, h
ever, that the CIM method should be applicable to multisc
systems for which an approximation of the slow dynam
can be obtained, provided the system exhibits mixed fast
slow motion. We briefly review singularly perturbed system
and center manifold theory in Sec. II A, and develop t
CIM method in Sec. II B. The CIM method depends on tw
parameters, and we discuss their choice in Sec. II C.
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A. A brief review of singularly perturbed systems
and center manifold theory

Consider the singularly perturbed system

ẋ5 f ~x,y;m!,

m ẏ5g~x,y;m!, ~1!

wherexPRm, yPRn, f and g are sufficiently smooth func-
tions of their arguments, the singular parameter ism, i.e., 0
,m!1, and overdot denotes differentiation with respect
time. Whenm50, Eq.~1! reduces to an ordinary differentia
equation plus the algebraic constraintg(x,y;0)50. Solving
the constraint fory yields an expression of the formy
5H0(x). The graph ofH0 is referred to as a slow manifold
and we label this graphM0. A reduced dimension system i
obtained usingH0,

ẋ5 f „x,H0~x!;0…, ~2!

which models the slow dynamics constrained toM0.
It is possible that the slow manifold will not be globall

single valued; it may, in fact, consist of several sheets. T
reduction technique provides local information on a sub
gion of the slow manifold. However, for the present discu
sion, we assume thatM0 is global. The reduced system o
Eq. ~2! determines the dynamics constrained to the subsp
y5H0(x). The so-called fast dynamics, motion off ofM0,
are obtained by changing to the stretched variablet5t/m in
Eq. ~1! and then settingm to zero,

x850,

y85g~x,y;0!, ~3!

where 8[d/dt. For fixedx5x0, there is an equilibrium of
the second equation of system~3! at ye5H0(x0). The linear
stability of ye is determined by the real parts of the eige
values of Dyg(x,y;0)ux5x0 ,y5ye

, which we assume have
nonzero real parts. Considering Eqs.~1! and ~3!, the reason
for the nomenclature ‘‘slow’’ and ‘‘fast’’ becomes apparen
Eq. ~2! evolves on anO(1) time scale while Eq.~3! evolves
on anO(1/m) time scale.

A typical approach to singular perturbation problems su
as Eq.~1! is to obtain so-called matched asymptotic so
tions. Such a solution is obtained by solving the slow pro
lem ~2! and fast problem~3! and matching the resulting so
lutions at their common asymptotic boundary@25,26#. Here
we adopt a geometric viewpoint, and consider the fast
slow invariant subspaces in their entirety. The above disc
sion applies only in the casem50, but we now consider the
situation whenm is nonzero but small.

Whenm is small, based on an implicit function theore
argument, one expects the slow invariant manifold to pers
Indeed, when 0,m!1, a slow invariant manifold persists i
M0 is a normally hyperbolic invariant manifold@27#. We
label this manifoldMm , and it is given by the graph of a
function which we label asy5Hm(x). Using the invariance
properties of Eq.~1!, one obtains an asymptotic expansion
0-2
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CONSTRUCTING CONSTRAINED INVARIANT SETS IN . . . PHYSICAL REVIEW E68, 056210 ~2003!
the form Hm(x)'H0(x)1mH1(x)1m2H2(x)1•••, which
converges asm→0. The leading order termH0(x) in the
expansion ofHm(x) is simply the termH0(x) introduced in
the discussion above for the casem50. For more back-
ground on geometric singular perturbation theory and s
manifolds, including howHm is calculated, see, for example
Refs.@11,12,28,29#.

For the purposes of this paper, we consider a system
form ~1! with the following assumptions. First, assume t
real parts of the eigenvalues ofDyg(x,y;0)ux5x0 ,y5ye

are

negative for allx0, so thatM0 is linearly stable. We also
assume that, form sufficiently small, the only attractor in th
full phase space lies onMm . Additionally, assume thatM0
is single valued, and therefore, global. Under these hyp
eses, Eq.~2! will model the dynamics in the asymptotic lim
m→0. Then, for 0,m!1 and sufficiently small,Mm will
be globally attracting, so that after any fast transients h
died out, orbits will lie exponentially close to the slow man
fold Mm . We also assume that the dimension of the sl
subspace ism>3, and that a chaotic attractor~or saddle!
exists onMm .

As m is increasedMm may lose asymptotic stability, s
that global dynamics of the system are no longer carried
Mm , and nontrivial fast motions occur. In the transitio
from purely slow motion to mixed fast and slow motion, it
useful to understand the structure of dynamic invariants
Mm . For convenience, we define theMm-relative invariant
to be the set of points onMm which remain onMm under
action of the flow. Note that form sufficiently small, the
Mm-relative invariant is justMm itself, but asm increases,
the Mm-relative invariant becomes a more complex sub
of Mm .

B. Description of the CIM method

We now present a method to approximate t
Mm-relative invariants. We start with a singularly perturb
system of form~1!. For m sufficiently small, there is a slow
manifold Mm , which we assume to be given by the gra
y5Hm(x) over the slow variablesx in some regionD,Rm,
chosen to contain the slow dynamics of interest. We a
assume that system parameters are chosen such that th
namics of the full system are characterized by either a c
otic attractor or chaotic saddle onMm . We also suppose tha
m is chosen large enough thatMm is not asymptotically
stable, in the sense that there exist initial conditions nearMm
which do not converge asymptotically toMm .

The idea of the method is that points in the sta
Mm-relative invariant will by definition never leaveMm .
An approximation of this set is then obtained by findi
those points onMm which remain ‘‘near’’Mm for a ‘‘speci-
fied length’’ of time. We discuss the issue of what we me
by near and specified length in the following section. Lik
wise an approximation of the unstableMm-relative invariant
is obtained by finding points onMm remaining nearMm for
a specified length of time in the time-reversed system.
outline the CIM method and follow with the details of th
method below.
05621
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~1! Construct a mesh of initial valuessi on an approxima-
tion to the slow manifoldMm .

~2! Evolve each initial valuesi forward ~backward! under
Eq. ~1! to some fixed timeT1(2T2).

~3! If the solutionsi(t) remains within some«1 («2) of
the slow manifold approximation for all timetP@0,T1# (t
P@2T2,0#), then si(0)PM m

S @si(0)PM m
U#, whereM m

S

(M m
U) is defined to be the stable~unstable! Mm-relative

invariant approximation.
The CIM method can also easily be applied to maps

replacing timeT6 with iterateN6 above.
We define a given initial condition onMm to be an

«T-resolved pointif it remains within « of Mm for time T
under action of the flow. To be precise, lets be an initial
condition chosen on the approximated slow manifoldMm .
At each time stepth5t01hDt of the integration, we mea
sure the distance

d[A(
i 51

n

~yh,i2Hh,i !
2,

of the fast variables in the numerically integrated soluti
$xh ,yh%[$x(t5th),y(t5th)% from the point Hh[Hm(xh)
on the slow manifold approximation, computed at the sl
variablesxh of the integrated solution, where we recall thatn
is the number of fast components in Eq.~1!. If for all time
steps up to and includingT, d,«, thens is an«T-resolved
point.

Step 1.For each componentxi , i 51, . . . ,m of the slow
variablex, choosexi ,L and xi ,U such that for allt>0, xi ,L
,xi,xi ,U . Then let DPRm be the box defined byD
[@x1,L ,x1,U#3@x2,L ,x2,U#3•••3@xm,L ,xm,U#, and choose
a rectangular mesh ofPm values,

S[ H xPDuxi5xi ,L1Dxi j , j 50, . . . ,P21,

i 51, . . . ,m, Dxi[
xi ,U2xi ,L

P21 J .

~The mesh may also be defined in other ways, such as f
a random distribution.! A mesh on an approximation of th
slow manifold is then given by Ŝ[$(x,y)uxPS,y
5Hm(x)%.

Step 2.For each initial conditionsPŜ, system~1! is in-
tegrated with a stiff solver such as a Gear method, to ti
T6.

Step 3.Surround the domainD by an« neighborhoodN,
where distance is taken in the Euclidean norm. The size
the« neighborhood«1 («2) is chosen small enough so th
most initial conditions leaveN for tP@0,T1#, but not
smaller thanO(m), the size of the singular perturbation p
rameter~see also the remark below!. If s is an «T-resolved
point for («1 ,T1), then sPM m

S . Likewise, if s is an
«T-resolved point for («2 ,T2), thensPM m

U .
Remark.There is another, more efficient way to compu

the pointssiPM m
U . For anysiPM m

S , the image ofsi under
the timeT1 flow map of Eq.~1!, pT1[(xT1,yT1), approxi-
mates the unstable invariant setM m

U , since by definition the
0-3
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MORGAN, BOLLT, AND SCHWARTZ PHYSICAL REVIEW E68, 056210 ~2003!
solution with pT1 as an initial condition remains nearMm

for tP@2T1,0#. Thus, only points inM m
S need be com-

puted explicitly. However, there is one disadvantage to
approach: It is not practical to examine a subregion ofM m

U ,
since the pointspT1 will tend to spread out across the enti
unstable invariant set.

Some observations of the above method are importan
note.

~1! To obtain a higher level of detail of the structure of t
~un!stableMm invariants, one may simply impose a fin
mesh on some subregion ofD of interest and reapply the
CIM method.

~2! Under the assumptions stated above, and form suffi-
ciently small, the global attractor of the system is contain
in a trapping region which containsMm . Thus, in the time-
reversed system, orbits will tend to move away fromMm
and off to infinity. When considering the time-reversed m
to approximate the unstableMm-relative invariant, it is
therefore necessary to set«2.«1 , and it may also be nec
essary to decrease the required residence timeT2 as well.

C. Choosing«Á and TÁ

The choice ofT6 and «6 must be made in a problem
dependent fashion. The diameter of the box surroundinD
should be small enough so that orbits of the system
escape the box. On the other hand, if the diameter is take
be too small, then most initial conditions will quickly leav
the box, and the resulting approximation will be poor. T
smallest value forT6 which sufficiently distinguishes be
tween points that approximate the constrained stable set
those that leave the slow manifold should be used. Th
statements describe desirable properties that the param
will satisfy, but do not indicatehow to choose the method
parameters. We now present an approach to choosing«6 and
T6.

When choosing«6 it is useful to examine a time series o
the ‘‘bursting variable’’D i5uZi2H(Zi)u, whereZ denotes
the fast variables andH is the slow manifold approximation
and which measures the distance of the fast compon
from the slow manifold. As a general guide, we found th
choosing«6 to be initially around~5–10!% of the maximum
amplitude of the fast bursts works well as a starting gues
is advisable to use a somewhat coarse initial mesh when
tuning the method parameters, and then to refine the mes
increase the resolution of the approximation.

Figure 1 shows the results of applying the CIM method
a coupled structural and mechanical system, to be introdu
in the following section. If the resulting CIM approximatio
of the invariant sets contains localized gaps of missing in
mation @as seen in Fig. 1~a!#, then increasing«6 fills in the
missing information. If on the other hand, the invariant
appears to be globally sparse@as seen in Figs. 1~g–i!#, then
decreasing the value ofT6 reduces the sparseness of the s
One could also refine the mesh in order to obtain an
provement in the approximation, however, this will add su
stantially to the computation time. If however the resulti
approximations consist of a number of simply connec
components, with no apparent fractal structure@as seen in
05621
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Figs. 1~a–c!#, thenT6 should be increased.
We found that the best method for tuning the meth

parameters was to first setT6 to a relatively small value and
then set«6 as described above to obtain a set that appear
be reasonably filled out.T6 may then be increased until th
finer details of the set are observed. Additionally, the me
can be refined to fill in finer details, or a submesh can
employed on a subregion of interest. Note also that wh
refining the mesh, it may be possible to decrease the valu
T6, which will make the computations somewhat more ec
nomical. We also note here that the CIM method is simple
implement on a parallel or distributed computing platfor
and this greatly speeds the computations. See Sec. VI
further comments.

There are a number of challenges to obtaining a rigor
error analysis of the approximated constrained invariant
In addition to roundoff error, there is an error introduced
the approximation of the slow manifold, as well as an er
that depends on the coarseness of the mesh used. A back
error analysis is the subject of current investigation.

III. EXAMPLE: COUPLED VISCOELASTIC
STRUCTURAL-MECHANICAL SYSTEM

In order to demonstrate the CIM method, we conside
specific mechanical system consisting of a vertically po
tioned viscoelastic linear rod of densityr r , with cross sec-
tion Ar , and lengthLr , with a pendulum of massM p and
arm lengthLp coupled at the bottom of the rod, and whe
the rod is forced from the top harmonically with frequen
V and magnitudea @2#. The rod obeys the Kelvin-Voigt
stress-strain relation@30# andEr andCr denote the modulus
of elasticity and the viscosity coefficient, whileCp is the
coefficient of viscosity~per unit length! of the pendulum and
g is the gravitational constant of acceleration. The pendul
is restricted to a plane, and rotational motion is possible. T
system is modeled by the following equations:

M pLpü1M p@g2 ẍA2üB#sin~u!1CpLpu̇50,

Arr r ü~x,t !2ArEru9~x,t !2ArCru̇9~x,t !2Arr r~g2 ẍA!50,
~4!

where˙[]/]t, and 8[]/]x, with boundary conditions

u~x50,t !50, ArEr

]u

]x
ux5Lr

5ArEr

]uB

]x
5Tpcos~u!,

and where

Tp5M pLpu̇21M p~g2 ẍA2üB!cos~u!

denotes the tension acting along the rigid arm of the pen
lum. The variableu(x,t) denotes the displacement field o
the uncoupled rod with respect to the undeformed confi
ration, relative to the pointA, while uB denotes the relative
position of the coupling endB of the rod with respect to
point A. See Fig. 2 for a schematic of the rod and pendul
system.
0-4
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FIG. 1. The results of applying the CIM method to the structural-mechanical system presented in Sec. III, showing the effect th
of method parameters«1 andT1 has on the approximation of the resulting stable constrained invariant set. The columns correspon
left to right to «1P$0.01,0.05,0.1% and the rows correspond from top to bottom toT1P$2.0,4.0,6.0%.
i-
Equation~4! is nondimensionalized by the following var
able rescalings:

j5
x

Lr
, t5vpt,

XA5
xA

Lp
, U5

u

Lp
, UB5

uB

Lp
,

and parameter rescalings
05621
m5
vp

v1
, mm5

v1

vm
5

1

2m21
, b5

M p

Arr rLr
,

zp5
1

2vp

Cp

M p
, z r5

1

2v1

p2Cr

4Lr
2r r

,

where

vp5A g

Lp
, vm5

p~2m21!

Lr
AEr

r r
, m51,2, . . . ,̀
0-5
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MORGAN, BOLLT, AND SCHWARTZ PHYSICAL REVIEW E68, 056210 ~2003!
are the natural frequency of the uncoupled pendulum and
spectrum of natural frequencies of the uncoupled flexi
rod, respectively, whilezp andz r denote their damping fac
tors.

The stable and unstable static equilibrium configuratio
of the coupled rod and pendulum system are given
(uc ,Û) and (uS6

,Û), where

uc50, uS6
56p,

Û5
m2p2

2
@2~11b!j2j2#.

The normalized equations are thus

ü1@12V̈B~t!2ẌA~t!#sin~u!12zpu̇50,

m2p2V̈~j,t!2V9~j,t!28z rmV̇9~j,t!52m2p2ẌA~t!,

V~j50,t!50, V8~j51,t!52m2bp2@12T cos~u!#,
~5!

where

V~j,t!5U~j,t!2Û~j!, 0<j<1, 2`,t,1`,

and we note that we redefine˙[]/]t, and 85]/]j for the
remainder of the paper.

In carrying out our analysis, we will consider a reducti
of the system~5!. This reduction is obtained by performing
modal expansion of the rod equation, second equation of~5!,
where the displacementV is expanded asV(j,t)
5(m51

` hm(t)fm(j). This results in an infinite system o
coupled oscillators,

θ

x

Lp

pM

B

A
A

rL

0

B
u

x+u x

Forcing

FIG. 2. A schematic of the rod and pendulum system. The
tensible viscoelastic linear rod is sufficiently stiff relative to t
pendulum that it evolves on a fast time scale, while pendulum m
tion is slow. The coupled system is driven from the top with
periodic forcing function. The rod moves only in the vertical dire
tion, and the pendulum is planar and is free to undergo rotatio
motion.
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`

~21! j 11ḧ j2ẌA~t!Gsin~u!22zpu̇,

Lm~u!ḧ j52
hm

4h2hm
2

12z r

ḣm

mmm
2

2~21!m112b@u̇2cos~u!2sin2~u!#

2F4mm

p
1~21!m112b cos2~u!G ẌA~t!, ~6!

equivalent to Eq.~4!, whereLm(u) is the infinite linear op-
erator

Lm~u![(
j 51

`

@dm j1~21!m1 j2b cos2~u!#.

See the Appendix for the details of this transformation.
Finally, consider the finite set of ordinary differentia

equations obtained from Eq.~6! by truncating to the firstN
rod modes and applying the additional rescalings$C1 ,C2%
5$u,u̇%, and $m2mm

2 Z2m21 ,mmm
2 Z2m%5$hm ,ḣm%, obtain-

ing

Ċ15C2 ,

Ċ252F12(
j 51

N

~21! j 11f N~C,Z!2aC4G
3sin~C1!12zpC2 ,

Ċ3522pVC4 ,

Ċ452pVC3 ,

mŻ2m215Z2m ,

mmm
2 Ż2m5 f N~C,Z!,

m51,2, . . . ,N, ~7!

where

f N~C,Z!5Lm,N
21 ~C1!H 2

1

4
Z2m2112z rZ2m

2~21!m112b@C2
2cos~C1!2sin2~C1!#

2F4mm

p
1~21!m112b cos2~C1!GaC4J

andLm,N
21 (u) is the inverse of theN3N truncation of opera-

tor Lm(u). Note that we have changed to an autonomo
system by introducing the cyclic variablesC3 and C4 to
account for the periodic forcing, which we recall has peri

-

-
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CONSTRUCTING CONSTRAINED INVARIANT SETS IN . . . PHYSICAL REVIEW E68, 056210 ~2003!
V. However, only one additional variable is realized, due
the relationC31C451. For this paper, we consider th
truncated system obtained by takingN51. For the param-
eter regimes we consider here, we also considered system~7!
with N52 and N510, and found qualitatively similar re
sults.

The primary parameter governing the coupling betwe
the rod and pendulum is the ratio of the natural frequency
the pendulum to the frequency of the first rod mode,m
[vp /v1. In the limit v1→`, the rod is perfectly rigid,m
→0, and the system reduces to a forced and damped pe
lum. For 0,m!1 sufficiently small, system motion is con
strained to a slow manifold, and the~fast! linear rod modes
are slaved to the slow pendulum motion@12#. For nonzeroa
~the amplitude of the periodic forcing! the slow manifold is a
nonstationary~periodically oscillating! two-dimensional sur-
face.

We note that for 0,m!1, Eq. ~7! is a singularly per-
turbed system of the form of Eq.~1!, and there exists a slow
manifold Mm for Eq. ~7!. The pendulum variables~plus the
periodic forcing! are the slow variables, while the rod var
ables are the fast variables. Using the invariance prope
of the vector field, we obtained an analytic approximation
the slow manifold of Eq. ~7! to O(m2): Z5Hm(C)
5H0(C)1mH1(C)1m2H2(C). Due to the complexity of
the vector field and the fact that we consider anO(m2) ap-
proximation, we usedMATHEMATICA @31# to compute the ex-
pressions for the componentsHi .

By strobing Eq.~7! at the period of the drive, one obtain
the map

Gr~C,Z![fr1T~C,Z!,

wheref t(C,Z) is the flow of Eq.~7!, T is the period of the
cyclic variableC4, andrP@0,2p# is the phase ofC4. We
then apply the CIM method developed in Sec. II to this m
Under action of the map, the slow manifoldMm , which has
codimension 2, corresponds to a family of two-dimensio
invariant surfacesSm,r of Gr .

IV. MODEL RESULTS

In this section, we examine the transition of the rod a
pendulum model from low-to high-dimensional chaos, as
coupling parameterm is increased. We first examine how th
Lyapunov values change as a function ofm, and find a criti-
cal value at which a second positive Lyapunov exponent
velops. We then apply the CIM method to the coupled r
and pendulum model~7! with N51, and show that the struc
ture of the constrained invariant sets develops form well
below the critical value at which the second positi
Lyapunov exponent appears. Unless otherwise noted, s
lation parameters are as follows:m50.05, b50.5, z r5zp
50.01, a52.153 367, andV52.0.

We first consider the effect of increasingm on the
Lyapunov exponents. In the case where 0,m!1 is suffi-
ciently small thatSm,r is invariant under the action of th
mapGr . This situation corresponds to global slow motion
the associated flow, hence the global attractor lies onSm,r ,
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and a solution evolved from any initial conditionx0 not on
Sm,r , converges asymptotically toSm,r under action ofGr
and remains there. A reduced dynamic description of
model is obtained in this case by considering system~7! with
the change of variableZ5Hm(C). When the amplitudea of
the periodic forcing is large enough, the system is chao
and motion is still constrained to the slow manifold, a
there is one positive Lyapunov exponent. However, asm is
increased sufficiently, a second positive Lyapunov expon
develops atm'0.142. Thus, it is clear that dynamic mode
transverse to the slow manifold are excited. See Figs. 3
4 for a plot of the Lyapunov exponents as a function of t
forcing m. Note that a fixed value fora is chosen, and there
arem values for which stable periodic orbits exist, explai
ing the window of all-negative Lyapunov values.

We next directly examine the effect of varyingm on the
form of the solutions of Eq.~7!, and in particular, demon
strate how the solution transitions from motion on the sl
manifold to higher-dimensional motion about the slow ma
fold. In Figs. 5~a–d!, we plot the difference between th

computed solution (C̃,Z̃) of the ordinary differential equa

tion ~7! and the slow manifold approximation„C̃,Hm(C̃)…,
as a function of time. In Fig. 5~a!, m50.001, and the initial
condition is chosen off of the slow manifold. After a brie
transient motion, the solution converges to the slow ma
fold, indicating that rod motion is slaved to the~slow! pen-
dulum motion. Again,a is chosen large enough that syste
motion is chaotic, but the chaotic attractor lies onSm,r .

As m is increased, system motion is no longer constrain
to the slow manifold, as seen in Fig. 5~b!, wherem50.05. In
this case, an initial condition located far from the slow ma
fold still approaches the slow manifold. However, thereaf

FIG. 3. ~Color online! Five finite time Lyapunov exponents o
Eq. ~7! as a function ofm. Note that the most negative Lyapuno
exponent is not shown. The second positive Lyapunov expon
~blue! appears nearm50.142, well after the onset of bursting. Th
brief window of all-negative Lyapunov exponents occur due to
appearance and disappearance of stable periodic orbits.
0-7
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MORGAN, BOLLT, AND SCHWARTZ PHYSICAL REVIEW E68, 056210 ~2003!
the orbit oscillates in anO(1) neighborhood aboutMm . The
rod-displacement dynamics exhibit a bursting charac
which is illustrated in greater detail in Fig. 5~c!. A burst
event develops as a sudden, large-amplitude excursion a
from the slow manifold, followed by a rapid relaxation o
cillation back on to the slow manifold. Physically, a burst
characterized as the sudden onset of a large-amplitude r
vibration of the rod, superimposed over the slow rod mot
due to its slaving to the pendulum, which then quickly dam
out. Note that this is well below the parameterm'0.142 at
which a second positive Lyapunov exponent appe
Though nontrivial transverse dynamics have developed,
tistically, the slow dynamics dominate the fast dynamics.

We apply the CIM method form50.05, in which bursting
of O(1) amplitude is observed@see Figs. 5~b,c!#. As noted
above, the global attractor of the system is no longer c

(a)

(b)

FIG. 4. ~Color online! The bifurcation diagram showing the fa
rod displacement vsm, and the two finite time positive Lyapuno
exponents of Eq.~7!, on the same interval ofm values.
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fined toSm,r . Instead, there exist solutions with initial con
ditions nearSm,r which do not remain onSm,r , but which
wander in a neighborhood ofSm,r . For the remainder of this
section, without loss of generality, we consider the phasr
50. We set the threshold«1 of the method to 0.1 andT1

55 V. Thus, we require orbits to remain within 0.1 of th
slow manifold for five iterates ofG0. All other parameters
are as stated in the first paragraph of this section.

In Fig. 6~a!, we show the computed approximations of t
stable and unstable sets ofSm,0 in green and red, respectively
superimposed over the approximation of the slow manifo
in blue. Analogously with the definitionsM m

S and M m
U ,

which we recall are theMm-relative invariant stable and
unstable sets, we call the stable and unstable approxima
Sm,0

S and Sm,0
U , respectively. Additionally, we show the ap

proximation of the Mm invariants projected onto the
(C1 ,C2) plane. Note the fractallike structure of the se
The stable setSm,0

S ~green! approximates the set of points o
Sm,0 which remain onSm,0 under action of the mapG0, while
the unstable setSm,0

U ~red! approximates the set of point
which remain onSm,0 under action of the mapG0

21. Using
Sm,0

S as initial conditions for Eq.~7! and integrating to 5V,
we find that the resulting orbits remain within«50.1 of the
~time dependent! slow manifoldMm . Thus,Sm,0

S ,M m
S . By

extension,Sm,r
S ,M m

S for all rP(0,2p). Additionally, more
detail on the structure of the invariant set can be obtained
simply applying the CIM method to a mesh on a subreg
of the domainD. See Fig. 7.

The bursts do not appear to be correlated in time. Ho
ever, we have spatially correlated the onset of a burst t
localized ‘‘escape’’ region of the slow manifold, correspon
ing to the region where the pendulum is situated near vert
(C1mod 2p'0) and the pendulum velocityC2 is near a
local extremum, where solutions with initial conditions
this region immediately leave the slow manifold. Note th
this region is located away from the approximated co
strained invariant sets approximated with the CIM meth
Physically this region corresponds to a large moment
transfer from the pendulum to the rod. Figure 5~d! shows the
correlation between bursts and the pendulum positi
velocity. We found that, for the parameters chosen, a burs
observed whenuC2u.'3.

At a critical valuemc'0.142, another positive Lyapuno
exponent is born, and high-dimensional chaos develops.
values ofm slightly abovemc , the system still bursts, but th
bursts have large amplitude and lose the relaxation chara
observed whenm,mc . However, the approximated con
strained invariant sets are qualitatively the same as in
casem50.05. We speculate that the structures that give
to the instability transverse to the slow manifold do not
tersect the constrained invariant set. In fact, in the follow
section, we will show that the chaotic saddle associated w
the constrained invariant set has only one positive Lyapu
exponent, even form.mc .

As m increases further toward the valuem51/2, where
the rod and pendulum have a 2:1 resonance, it might
expected that the multiscale character of the system woul
lost. However, a time series indicates a difference in sca
0-8
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FIG. 5. ~Color! Figures indicate the fast motion of the rod. Each figure shows a part of the time series resulting from the integr
Eq. ~7!. The difference between the first fast componentZ1 and its projectionHm(C) onto the slow manifold is plotted. In~a!, m
50.001, and the system exhibits only slow motion, after the fast transient has died out. In~b!, m50.05, and after an initial fast transien
a bursting behavior is observed. The boxed region is shown in greater detail in~c!. ~d! Also corresponding to the boxed region of~b!, shows
the correlation between fast bursting and the pendulum positionC1 and velocityC2, whereC1 is plotted in green andC2 is plotted in blue.
Note that bursts are observed whereC2 has a local extremum withuC2u.'3, andC1mod 2p 50.
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albeit, with the ‘‘slow’’ variation having a much larger am
plitude than for the values ofm already considered. Applying
the CIM method with«15400, it is possible to obtain an
approximation of the ‘‘stable set.’’ See Fig. 8, which al
shows a typical time series in this parameter regime. Tho
the amplitude of the solution is much larger than away fr
resonance, the difference in scales, as exhibited in the o
sional large-amplitude burst, is apparent. In this regim
points in M m

S @Fig. 8~b!# exhibit only ‘‘small-amplitude’’
bursting for a long time, where here small amplitude is re
tive to the large-amplitude bursts pictured in Fig. 8. Clea
the approximation shown in Fig. 8~b! will have a large error
bound, due to the size ofm, and the approximation will no
exhibit good quantitative agreement with the underlying
variant set. However, we expect the approximation to giv
good qualitative approximation.
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In addition to the various forms of chaotic bursting d
scribed above, fast periodic bursting is also observed.
example, whenm50.05 buta is reduced to 1.745, a long
chaotic transient is observed, which eventually develops
a fast periodic orbit, distinguished by the fact that the pe
odic orbit lies off the slow manifold, and is characterized
a rapid and repeating high-frequency vibration of the ro
Figure 9 shows the fast rod motion representing three per
of such a solution. The role the fast periodic orbits play
organizing the global bursting dynamics~if any! is not yet
understood, but is the subject of an ongoing investigation

We additionally ran simulations for several other valu
of the parameters. In particular, we experimented with va
ing the mass-ratio termb, the coupling strengthm ~while
maintaining it in the small parameter regime!, the rod and
pendulum damping termsz r andzp , and the amplitudea of
0-9
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FIG. 6. ~Color! The computed stable invariant setSm,0
S ~green! and unstable invariant setSm,0

U ~red! on the slow manifold~blue!. ~b! The
same invariant sets projected onto the (C1 ,C2) plane. The boxed region is shown in Fig. 7. The parameters arem50.05, a52.133 67,
z r5zp50.01, andV52.
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the periodic forcing. In all cases in which we observed bu
ing off of the slow manifold, the resulting approximatio
generated with the CIM method yielded qualitatively simi
results to those presented here, and we do not display
results~but see Fig. 1, showing the projected results of
plying the CIM method where the model parametersm
50.05, b50.25, z r50.02, zp50.005, anda52.5 were
used!.

V. COMPUTING CHAOTIC SADDLES: EXTENSION
OF STEP STAGGER

The step and stagger method@14# provides a highly accu-
rate way to compute chaotic saddles of maps or flows
05621
t-

eir
-

f

arbitrary dimension. Here we modify the step and stag
method to compute the chaotic saddle constrained to
slow manifold of the rod and pendulum system~7!.

The CIM method of Sec. II allowed us to compute a
approximation of the stable and unstable manifolds of
chaotic saddle, and an approximation of the saddle wo
therefore be obtained by considering the intersection of
stable and unstableMm-invariant approximations. However
it is not possible to compute the Lyapunov exponents of
chaotic saddle using the CIM method, since it calcula
points that approximate the chaotic saddle independentl
one another, while the step and stagger method compute
approximation of an orbit on the chaotic saddle.

The step and stagger method works by computing ad
0-10
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CONSTRUCTING CONSTRAINED INVARIANT SETS IN . . . PHYSICAL REVIEW E68, 056210 ~2003!
pseudotrajectory on a chaotic saddle. First, the chaotic sad
is surrounded by a transient regionR, containing no attractor.
The pseudoorbit is then computed by finding points insideR
that remain inR for a set number of iterates. If a pointp
escapes fromR under action of the flow~or map!, a pertur-
bationp1d is chosen, ford small, such thatp1d remains in
R for the required number of iterates. The perturbationd is
chosen from what is called anexponential stagger distribu-
tion. Briefly, the distribution is defined as follows: Letd
.0 and leta be such that 102a5d. Pull s from a uniform
distribution betweena and 15~assuming computations are
done to 15 digits of precision!. Finally, choose a random unit
direction vectoruPRd from a uniform distribution on the set
of unit vectors and definer 5102su. For the details of the
step and stagger algorithm, see Ref.@14#.

The implementation of the step and stagger method
the rod and pendulum problem~7! is almost the same as
described in Ref.@14#, but with the following differences:
We let thed neighborhood of the slow manifold introduce
above be the transient regionR defined in Ref.@14#. Region
R is not actually a transient region, since orbits continua
reenterR. However, we simply modify the method to look
for the first escape time fromR. At each iteration of the step
and stagger method

$xn11 ,yn11%5H F„xn ,Hm~xn!… ~step!

F„xn1r ,Hm~xn1r !… ~stagger!,
~8!

we project the iterateyn11 back on to the slow manifold, so
that the resulting step-stagger trajectory lies near the ac
slow manifoldMm . Additionally, since the solution is con-
strained to lie onMm , the small parameterd of the step and
stagger routine cannot be chosen to be less than the orde
the slow manifold approximation, which is ofO(m2) in the
coupled rod and pendulum example presented above.

FIG. 7. ~Color online! A detailed portion of the approximation
of the stable invariant setSm,0

S of system~7! for 0.4<C1<2 and
3<C2<4.2 @the boxed region of Fig. 6~a!#. The level of detail was
increased by using a finer mesh. The parameters are the same
Fig. 6.
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A. Applying the modified step and stagger algorithm
to the rod and pendulum system

We apply the modified step and stagger algorithm to
proximate the chaotic saddle associated with the constra
invariant sets computed in Sec. IV. The model paramet
other thanm, are as stated in the first paragraph of Sec.
Figure 10 shows the results of a calculation of the stable
unstable invariant sets calculated with the CIM metho

s in

Ψ 1

2
Ψ

(a)

(b)

FIG. 8. ~Color online! The figure on the top shows part of a tim
series of the fast motion of the rod in the casem50.5, where the
pendulum and rod are in resonance. Note there are mixed sm
and large-amplitude bursts, but that there is a total loss of
relaxation-oscillation character of the bursting. The figure on
bottom shows part of the ‘‘stable set’’ calculated by the CI
method, indicating that despite the fact the system is at the edg
the singular perturbation regime, a definite structure can still
obtained using the method. The method parameter«1 is 400.
0-11
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MORGAN, BOLLT, AND SCHWARTZ PHYSICAL REVIEW E68, 056210 ~2003!
combined with the calculation of the chaotic saddle using
modification of the step and stagger method. In the figu
m50.05.

We computed the Lyapunov exponents of the chao
saddle for the rod and pendulum system withm50.05, using
the modified step and stagger algorithm, and found one p
tive Lyapunov exponentlu52.0660.01. Increasingm to
0.148, where there are two positive Lyapunov exponent
the full solution, we still found that the chaotic saddle h
only one positive Lyapunov exponentlu'1.5. This implies
that the high-dimensional dynamics observed in the mo
does not arise from the chaotic saddle. This result is
surprising, given that the transverse unstable dynamics w
found in Sec. IV to be localized away from the constrain
invariant sets. We surmise that the chaotic saddle@which is a
chaotic attractor in the constrained model, Eq.~2!# organizes
the low-dimensional chaotic dynamics, while the emerg
higher-dimensional dynamical behavior arises due to so
other structure transverse to the slow manifold. The loca
of structure responsible for the transverse dynamics is
subject of continuing study.

VI. DISCUSSION

We present a brief discussion on an alternate viewp
that might be taken to construct constrained stable and
stable invariant sets, as well as some difficulties that m
arise with such an approach.

The traditional approach to constructing stable and
stable manifolds of a periodic orbit is based on the sta
manifold theorem. One might argue that stable and unst
manifolds of some high-period invariant orbit constrained
the slow manifold could be found, which would approxima
the stable and unstable manifolds of an invariant set c
strained to the slow manifold. This in turn would approx

FIG. 9. ~Color online! The rod displacement from slow motio
~as described in the caption to Fig. 5! showing three periods of a
burst observed in system~7! for a51.745, m50.05, and all other
parameters as enumerated in the text.
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mate the closure of all such embedded periodic orbits,
their stable and unstable manifolds. However, there are
ficulties with this approach.

We describe the problem in terms of the stroboscopic m
G0 of the coupled rod and pendulum problem over one
riod of the drive, and consider a high-period periodic orbiz
constrained to the slow manifold. One would calculate
local unstable spaceEu(z) as a hyperplane throughz,
spanned by the unstable eigenvectorsvu,1 ,vu,2 , . . . ,vu,m ,
corresponding to eigenvalueslu,1>lu,2>•••>lu,m.0 of
the Jacobian matrixDG0uz which, by the stable manifold
theorem, can be continued from a local manifold to a glo
unstable manifoldWu(z). However, there are significant an
now well-known computational difficulties due to uneve
growth rates of an initial sphere inEu(z), due to unbalanced
instabilities in the typical case thatlu,i.lu, j.0.

For the problem considered, and for many hig
dimensional problems, the unstable manifold of a perio
orbit will often be a two or greater dimensional surface tra
verse to the invariant slow manifold. In such a case, once
spanning vectors$vu,1 ,vu,2% of Eu(z) are found, it is neces-
sary to project onto the tangent spaceDHmuC of the graph of
the slow manifold,Z5Hm(C). However, there are signifi
cant computational challenges to constraining the growth
such a one-dimensional subunstable manifold to the s
manifold. Likewise, locating a large number of periodic o
bits within the slow manifold would also be computationa
challenging. Construction of the stable manifold embedd
in the slow manifold exhibits similar challenges. Thus, w
hope that our method will be useful to explore the still litt
understood transition from low- to high-dimensional chao
dynamics.

VII. CONCLUSION

The transition from simple dynamics, such as perio
behavior, to chaotic dynamics has been well studied, an
great deal of theory has been developed. Much less is kn
about the transition from low-dimensional to high
dimensional chaos. Such an understanding is importan
provide a deeper understanding of systems such as
coupled viscoelastic structural-mechanical system we p
sented in Sec. III, which can exhibit startling transitions fro
low-dimensional chaotic dynamics, consisting of slow ch
otic pendulum motion, with rod motion slaved to the pend
lum, to higher-dimensional behavior, where fast rod mod
are excited independent of the pendulum. A principal ben
of the tool we have introduced is that since it is possible
isolate the slow invariant sets, regions on the slow manif
with transverse instabilities may be located. Once these
gions are known, it becomes possible to predict transiti
from slaved to nonslaved~low- to high-dimensional! dynam-
ics. In addition we are working on finding the specific stru
tures on the slow manifold which have transverse instab
ties. If such structures can be understood, it might be ho
that the problem can be recast in terms of a normal fo
thus providing a powerful theoretical underpinning to e
plain the chaotic to hyperchaotic transitions often seen
diverse physical systems.
0-12
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FIG. 10. ~Color! The upper figure shows the result of the modified step and stagger calculation of system~7!, consisting of ad
pseudoorbit of about 96 000 points, projected onto the slow variables (C1 ,C2). The lower figure shows a zoom of the same data, along w
pieces of the stable and unstable manifold of the saddle, computed with the CIM method. All parameters are as stated in the tex
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Finally, we remark that the algorithm is easy to parall
ize, since the method relies on ‘‘painting’’ the phase spa
with a grid of points, and each such point is computationa
independent of the others. We implemented the CIM met
in FORTRAN90, using the MPICH~message passing interfac
for connected hardwaare! @32# implementation of the Mes
sage Passing Interface specification@33# on a Beowulf clus-
05621
-
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d

ter consisting of 32 AMD Athlon processors organized in
16 nodes, of which typically 24 processors were used. Ty
cal runs were of the order of minutes for a parallel run ver
hours for a serial implementation and only approximately
additional lines of code were necessary to implement
parallel version of the code. In addition, we found thatT1

can be quite small and the resulting image is still quite
0-13
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MORGAN, BOLLT, AND SCHWARTZ PHYSICAL REVIEW E68, 056210 ~2003!
tailed. For example, in Fig. 6, we tookT156V ~where we
recall thatV is the period of the driveC4) and so the status
~reject or keep! of each trial initial condition could be
quickly computed. Taken together, this implies that one
adjust parameters~be they system or algorithm paramete!
and almost immediately determine the effect on the resul
approximations. In addition, subregions of the phase sp
can be examined in more detail simply by employing a fin
mesh. Moreover, in contrast to many other approaches,
method is global and independent of manifold dimensi
making it applicable to a wide variety of problems.
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APPENDIX: TRANSFORMATION OF THE COUPLED
ROD-PENDULUM SYSTEM TO A SYSTEM

OF COUPLED OSCILLATORS

We present the transformation of the coupled system~5!
to a system of coupled oscillators. The treatment closely
lows Appendix A of Ref.@2#, and we note that we hav
introduced here corrections to expressions~47!, ~51!, ~54!,
and ~57b! of that paper.

We introduce the coupling present in the boundary con
tions into the partial differential equation~PDE!. The dis-
placementV admits the representation

V~j,t!5Vh~j,t!1v~j,t!, ~A1!

whereVh is the solution of the boundary value problem wi
homogeneous boundary conditions,

m2p2V̈h~j,t!2Vh9~j,t!22z rmV̇h9~j,t!52m2p2ẌA~t!,

Vh~j50,t!50, Vh8~j51,t!50. ~A2!

The displacementv,

v~j,t!52m2bp2@12T cos~u!#

is unique and satisfies the boundary conditions. The sh
functions and the natural frequencies of the homogene
boundary value problem associated with Eq.~A2! are

fm~j!5sinS ~2m21!p

2
j D , v̂m

2 5
1

m2mm
2

,

mm[
1

2m21
.

The displacements in Eq.~A1! are expanded as
05621
n

g
ce
r
ur
,

-
-

l-

i-

pe
us

V~j,t!5 (
m51

`

hm~t!fm~j!,

Vh~j,t!5 (
m51

`

nm~t!fm~j!,

v~j,t!5 (
m51

`

sm~t!fm~j!.

Furthermore, we define the inner product

^V~j,t!,f~j!&[2E
0

1

V~j,t!f~j!dj.

SinceV95Vh9 , PDE, second equation of Eq.~5!, becomes

m2p2V̈~j,t!2V9~j,t!28z rmV̇9~j,t!52m2p2ẌA~t!.

Projecting this ontofm , we obtain the modal oscillator

ḧm1
nm

4m2mm
2

12z r

ḣm

mmm
2

52
4mm

p
ẌA~t!. ~A3!

In view of the following relations:

nm5hm2sm ,

sm5^v~j,t!,fm~j!&5~21!m8bm2mm
2 @12T cos~u!#,

T5 u̇21@12ẌA~t!2V̈B~t!#cos~u!,

V̈B~t!5(
j 51

`

~21! j 11ḧ j~t!,

modal equation~A3! is reduced to a relation involving only
the modal amplitudehm . Finally, the coupled system~5! is
equivalent to the infinite set of coupled oscillators,

ü1F12(
j 51

`

~21! j 11ḧ j2ẌA~t!Gsin~u!12zpu̇50,

Lm~u!ḧ j1
hm

4m2mm
2

12z r

ḣm

mmm
2

2~21!m112b@u̇2cos~u!

2sin2~u!#52F4mm

p
1~21!m112b cos2~u!G ẌA~t!,

whereLm , an infinite linear operator depending nonlinear
on u, is given by

Lm~u![(
j 51

`

@dm j1~21!m1 j2b cos2~u!#.
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